

www.NGSSLifeScience.com

Topic: Carbon in the Biosphere Worksheet

Summary: Students will fill out the worksheet based on cellular energy including photosynthesis and cellular respiration.

Goals & Objectives: Students will be able to explain how energy is transferred in nature and the equations of photosynthesis and cellular respiration.

Time Length: 20 minutes

NGSS Standards:

HS-LS1-5: Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.

HS-LS1-7: Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy.

Materials:

Class notes or textbook or online textbook

- https://flexbooks.ck12.org/cbook/ck-12-biology-flexbook-2.0/section/2.17/primary/lesson/autotrophs-and-heterotrophs-bio/
- https://flexbooks.ck12.org/cbook/ck-12-biology-flexbook-
 2.0/section/2.30/primary/lesson/anaerobic-and-aerobic-respiration-bio/

Procedures:

Hand out this worksheet as a review of bioenergetics (cellular energy). Many questions repeat the same concepts but ask the question in a different way.

Accommodations:

Students with an IEP may work with a partner filling in the definitions.

Editable DOCX File and Answer Key:

Available at <u>www.ngsslifescience.com</u>

Name:		Row:	
	Date:	Period:	

Carbon in the Biosphere WS (Write definitions or explanations)

1.	Autotrophs get energy from
2.	Heterotrophs get energy from
3.	Are animals considered an autotroph or a heterotroph?
4.	Are plants considered an autotroph or a heterotroph?
5.	What does ATP do for the cell?
6.	Does ADP have stored chemical energy usable for the cell?
7.	What is different between ATP and ADP
8.	Energy releasing equation: <u>ATP</u> → + <u>Released Energy</u>
9.	What organelle performs photosynthesis?
10.	What process converts light energy into chemical energy?
11.	Photosynthesis Equation: + + Light → +
12.	What does photosynthesis release into the air?
13.	What are the reactants of photosynthesis?
14.	What are the products of cellular respiration?
15.	What organelle performs cellular respiration?
16.	What process releases the chemical energy stored in food?
17.	Cellular Respiration Equation: + → + + +
	What does cellular respiration release into the air?
19.	What are the reactants of cellular respiration?
20.	What are the products of photosynthesis?
21.	How are photosynthesis and cellular respiration related?
22.	What organelle is used in cellular respiration if oxygen is present?
23.	This is called respiration. (meaning with oxygen)
24.	What happens if oxygen is not present?
25.	When would a cell produce the most ATP, with or with out oxygen?
26.	Why do plants have mitochondrion?

27. Fill in the cycle below using the reactants for both cellular respiration and photosynthesis.

28. What is the process in box A and in box B?

29. What are the *molecules* created in step C and step D?

30. Compare and contrast photosynthesis and cellular respiration using the Venn diagram below.

