

Topic: Intro to Cancer Webquest

Summary: Students will use an animation to be introduced to cell division checkpoints and cancer.

NGSS Standards: *HS-LS1-4*. Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.

Time Length: 30 minutes

Prerequisite Knowledge: Students understand that mutations in DNA can cause a change in the protein that is made.

Materials:

- Device with Internet access
- Handout of the project

Procedures:

- 1. Students will need to have access to the following website and their device needs to be able to view the animation. Check this functionality before assigning to students.
- 2. http://www.hhmi.org/biointeractive/eukaryotic-cell-cycle-and-cancer

Accommodations: Give students with a modification IEP questions 1-6. Students with an IEP can take the handout home if they need extra time. You may choose to group students in two to share a computer.

Editable DOCX File and Answer Key:

Available at <u>www.ngsslifescience.com</u>

Name:		Row:	
	Date:	Period:	

Intro to Cancer Webquest

https://media.hhmi.org/biointeractive/click/cellcycle/

Click on the "Background" tab on the right	side.
1. Cells divide, differentiate, or die. What is di	fferentiation?
2. Circle the function of apoptosis. cell divide	s, differentiates, or dies
3. What are cell cycle regulators?	
4. If cell cycle regulators don't function proper	
Click on the center section labeled "Cell Cy	cle Phases" and read the overview.
5. Specialized proteins called "cell cycle regul	ators" or
regulate the	
Click on the red G1 checkpoint.	
6. The main goal of the G1 (restriction point)	checkpoint is to: or
Click on the center section labeled "Cell Cy	cle Regulators" and read the regulators
overview.	
7. What type of genes code for stimulating pro-	teins?
8. What type of genes code for inhibitory prote	eins?
9. What enzyme (protein) is the most import c	ell cycle regulator?
10. Since CDKs are always present, what activ	vates them?
11. When CDK is bound to a	, the cell cycle is stimulated (progresses to
the next stage in the cell cycle).	

Click on the cancer overview at the top of the overview and read the 5 slides.

12. An analogy of oncogenes is	
13. An analogy of tumor suppressor genes is	
14. Mutations in proto-oncogenes cause a	and are
dominant or recessive. Circle the correct answer.	
15. Mutations in tumor suppressor genes cause a	and are
dominant or recessive. Circle the correct answer.	
Click on the red stop sign in the G1 section and read the overview.	
16. What protein is very important to the G1 (restriction point) checkpoint?	
17. What is p53's main function?	
18. What is the Rb protein's main function?	

20. Using what you learned about key vocabulary, **compare and contrast** oncogenes and tumor suppressor genes. *Include at least 3 items per section*.

because they _____

19. Genes that encode the p53 protein and Rb protein are called _____

